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a b s t r a c t 

Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Exist- 

ing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions 

about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of sub- 

jects’ trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. 

However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of 

standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we 

propose a generalized training rule for the most widely used RNN architecture, long short-term memory 

(LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm 

is applied to model the progression of Alzheimer’s disease (AD) using six volumetric magnetic resonance 

imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle tem- 

poral gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation 

and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves 

a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed 

rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant anal- 

ysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under 

the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar’s 

test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data 

reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing 

values. Finally, it is illustrated how the method can successfully be applied to data with varying time 

intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits 

the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disor-

er that begins with memory loss and develops over time, causing

ssues in conversation, orientation, and control of bodily functions

 McKhann et al., 1984 ). Early diagnosis of the disease is challenging

nd is usually made once cognitive impairment has already com-

romised daily living. Hence, developing robust, data-driven meth-

ds for disease progression modeling (DPM) utilizing longitudinal

ata is necessary to yield a complete perspective on the disease for

etter diagnosis, monitoring, and prognosis ( Oxtoby and Alexan-

er, 2017 ). 

https://doi.org/10.1016/j.media.2019.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.01.004&domain=pdf
mailto:mehdipour@biomediq.com
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.media.2019.01.004
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Existing longitudinal DPM methods model biomarkers as a

function of disease progression using continuous curve fitting. In

the AD progression modeling literature, a variety of regression-

based methods have been proposed to fit logistic or polynomial

functions to the longitudinal dynamic of each biomarker ( Jedynak

et al., 2012; Fjell et al., 2013; Oxtoby et al., 2014; Donohue et al.,

2014; Yau et al., 2015; Guerrero et al., 2016 ). However, parametric

assumptions on the biomarker trajectories not only limit the flex-

ibility of such methods but also lead to the necessity of aligning

subjects’ trajectories. In addition, the existing approaches mostly

rely on independent biomarker modeling, and none of them con-

sider the temporal dependencies among measurements. 

Recurrent neural networks (RNNs) are non-parametric sequence

based learning methods that, by design, do not require alignment

of subject trajectories. They offer continuous, joint modeling of

longitudinal data while taking temporal dependencies among mea-

surements into account ( Pearlmutter, 1989 ). Long short-term mem-

ory (LSTM) networks, the most widely used type of RNNs, devel-

oped to effectively capture long-term temporal dependencies by

dealing with the exploding and vanishing gradient problem dur-

ing backpropagation through time ( Hochreiter and Schmidhuber,

1997; Gers et al., 1999; Gers and Schmidhuber, 2001 ). They employ

a memory cell with nonlinear reset units – so called constant er-

ror carousels (CECs) – and learn to store history for either long or

short time periods. Since their introduction, a variety of LSTM net-

works have been developed for different time-series applications

( Greff et al., 2017 ). The vanilla LSTM that utilizes three reset gates

with full gate recurrence is the most commonly used LSTM archi-

tecture. It applies the backpropagation through time algorithm us-

ing full gradients to train the network and can include biases and

cell-to-gates (peephole) connections. 

However, since longitudinal cohorts often contain missing

biomarker values due to, for instance, dropped out patients, un-

successful measurements, or different assessment patterns used for

different subject groups – as seen in the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) ( Petersen et al., 2010 ), standard RNNs

inclunding LSTMs cannot be directly applied. Pre-processing meth-

ods such as data imputation and interpolation are the most com-

mon approaches to handling missing data in RNNs. These two-step

procedures decouple missing data handling and network training,

resulting in a sub-optimal performance that is heavily influenced

by the choice of data pre-processing method ( Lipton et al., 2016 ).

Although RNNs themselves have been used for estimating miss-

ing data ( Parveen and Green, 2002; Yoon et al., 2018 ), the lack

of methods to inherently handle incomplete data in RNNs is evi-

dent ( Che et al., 2018 ). Other approaches update the architecture to

learn or encode the missing data patterns ( Che et al., 2018; Lipton

et al., 2016 ). These methods are typically biased towards specific

cohort or demographic circumstances correlated with the learned

missing data patterns and introduce additional parameters in the

network which increases the complexity of the network. 

In this paper, we propose a generalized method for training

LSTM networks that can handle missing values in both input and

target. This is achieved by applying the batch gradient descent al-

gorithm in combination with the loss function and its gradients

normalized by the number of missing values in input and target.

Our goal is different than the approaches that encode the miss-

ing values’ patterns ( Che et al., 2018; Lipton et al., 2016 ); we want

to train RNNs robust to missing values to more faithfully capture

the true underlying signal and to make the learned model gener-

alizable across cohorts. The proposed LSTM algorithm is applied to

AD progression modeling in the ADNI cohort ( Petersen et al., 2010 )

based on volumetric magnetic resonance imaging (MRI) biomark-

ers, and the estimated biomarker values are used to predict the

clinical status of subjects. MRI is known to be the best noninva-

sive way to examine changes in the brain in vivo during the course
f AD ( Biagioni and Galvin, 2011; Wu et al., 2011 ), and volumetric

nalysis is a widely used ROI-based method to estimate brain at-

ophy. 

The main contribution is three-fold and can be summarized as

ollows: 

• First, a generalized formulation of backpropagation through

time for LSTM networks is proposed to handle incomplete data,

and it is shown that such built-in handling of missing values

provides a better modeling and prediction performance com-

pared to using data imputation with standard LSTM networks. 
• Second, temporal dependencies among measurements in the

ADNI data are modeled using the proposed LSTM network via

sequence-to-sequence learning. To the best of our knowledge,

this is the first time such multi-dimensional sequence learning

methods are applied to neurodegenerative DPM. 
• Third, an end-to-end approach, without need for trajectory

alignment, is proposed for modeling the longitudinal dynamics

of imaging biomarkers and for clinical status prediction. This is

a practical way of implementing a robust DPM for both research

and clinical applications. 

A preliminary version of this work appeared in proceedings of

he International Conference on Medical Imaging with Deep Learn-

ng ( Mehdipour Ghazi et al., 2018 ). The present study contains a

ore detailed presentation and additional experiments to investi-

ate statistical significance, robustness as a function of amount of

issing data, and situations with varying time steps. 

. Proposed LSTM algorithm 

The main goal of this study is to minimize the influence of

issing values on the learned LSTM network parameters. This is

chieved by using the batch gradient descend method in combi-

ation with the backpropagation through time algorithm modi-

ed to take into account missing values in the input and target

ectors. More specifically, the algorithm sets input missing val-

es to zero, backpropagates zero errors corresponding to the tar-

et missing points, and uses an L2-norm loss function with residu-

ls weighted according to the number of available time points per

arget biomarker node ( β j 
m 

) and according to the total number of

vailable input values for all visits of all biomarkers ( β j 
x ). In addi-

ion, it normalizes input weight gradients of the loss function ac-

ording to the number of available time points per input biomarker

ode ( β j 
n ). Fig. 1 provides an illustration of how the normalization

actors are related to the input and output of an unfolded RNN.

ote that the use of batch gradient descend ensures the availabil-

ty of at least one data point per biomarker that can proportionally

ontribute in the weight update rule. 

.1. The basic LSTM architecture 

Fig. 2 shows a typical schematic of a vanilla LSTM architec-

ure. As can be seen, the topology includes a memory cell, an in-

ut modulation gate, and three nonlinear reset gates, namely in-

ut gate, forget gate, and output gate, each of which accepting cur-

ent and recurrent inputs. The memory cell learns to maintain its

tate over time while the multiplicative gates learn to open and

lose access to the constant error/information flow, to prevent ex-

loding or vanishing gradients. The input gate protects the mem-

ry contents from perturbation by irrelevant inputs, and the output

ate protects other units from perturbation by currently irrelevant

emory contents. The forget gate deals with continual or very long

nput sequences, and finally, peephole connections allow the gates

o access the CEC of the same cell state. 
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Fig. 1. Illustration of how the normalization factors are related to the input and output of an unfolded RNN. Assume an RNN with three consecutive time points { t − 1 , t, t + 

1 } , three input nodes, four hidden nodes, and two output nodes. Missing data for an instance observation j is illustrated as black nodes. We wish to weight the loss function 

and its gradients according to the number of available points in the input and output nodes. In this specific example, subject j has only one measurement available for its n th 

input node and the same many for its m th output node. Hence, the loss function and its gradients are weighted by 1/3. Moreover, since there is a total of five measurements 

available in the input layer, the loss function is weighted by 5/9. The later weighting factor is to ensure that the loss function takes the number of available points in the 

input layer into account. 

Fig. 2. An illustration of a vanilla LSTM unit with peephole connections in red. The 

solid and dashed lines show weighted and unweighted connections, respectively. 

(For interpretation of the references to color, the reader is referred to the web ver- 

sion of this article.) 
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.2. Feedforward in LSTM networks 

Assume x t 
j 
∈ R 

N×1 is the j th observation of an N -dimensional

nput vector at current time t . If M is the number of output units,

eedforward calculations of the LSTM network under study can be

ummarized as 

f 
t 
j = W f x 

t 
j + U f h 

t−1 
j + V f � c t−1 

j 
+ b f , 

˜ f 
t 

j = σg ( f 
t 
j ) , 

i 
t 
j = W i x 

t 
j + U i h 

t−1 
j + V i � c t−1 

j 
+ b i , 

˜ i 
t 

j = σg ( i 
t 
j ) , 

z t j = W c x 
t 
j + U c h 

t−1 
j + b c , 

˜ z 
t 
j = σc ( z 

t 
j ) , 
c t j = 

˜ f 
t 

j � c t−1 
j 

+ ̃

 i 
t 

j � ˜ z 
t 
j , 

˜ c 
t 
j = σh ( c 

t 
j ) , 

o 

t 
j = W o x 

t 
j + U o h 

t−1 
j + V o � c t j + b o , 

˜ o 

t 
j = σg ( o 

t 
j ) , 

h 

t 
j = ˜ o 

t 
j � ˜ c 

t 
j , 

here { f t j , i t j , z t j , c t j , o t j , h 

t 
j } ∈ R 

M×1 and { ̃  f 
t 

j , ̃
 i 
t 

j , ̃  z 
t 
j , ̃  c 

t 
j , ̃  o 

t 
j } ∈ R 

M×1 are

 th observation of forget gate, input gate, modulation gate, cell

tate, output gate, and hidden output at time t before and

fter activation, respectively. Moreover, { W f , W i , W o , W c } ∈ R 

M×N 

nd { U f , U i , U o , U c } ∈ R 

M×M are sets of connecting weights from

urrent and recurrent inputs to the gates and cell, respectively,

 V f , V i , V o } ∈ R 

M×1 is the set of peephole connections from the

ell to the gates, { b f , b i , b o , b c } ∈ R 

M×1 represents corresponding

iases of neurons, and � denotes element-wise multiplication. Fi-

ally, σ g , σ c , and σ h are nonlinear activation functions assigned

or the gates, input modulation, and hidden output, respectively.

ogistic sigmoid functions are applied to the gates with range [0,

] while hyperbolic tangent functions are applied to modulate both

ell input and hidden output with range [ −1 , 1 ] . Hence, the mea-

urements need to be in the same range [ −1 , 1 ] . 

.3. Robust backpropagation through time 

Let L ∈ R 

M×1 be the loss function defined based on the actual

arget s and network output y . Here, we consider one layer of

STM units for sequence learning which means that the network

utput is the hidden output. The main idea is to calculate the par-

ial derivatives of the normalized loss function ( δ) with respect to

he weights using the chain rule. 

 (m ) = 

1 

2 JT 

∑ 

j,t 

1 

β j 
x β

j 
m 

( y t j (m ) − s t j (m )) 2 , 

y t j (m ) = 

1 

JT 

[ 
1 

β j β j 
( y t j (m ) − s t j (m )) 

] 
, 
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where β j 
x = 

| x j | 
T N and β j 

m 

= 

| y j (m ) | 
T are normalization factors to han-

dle missing values of the j th observation with batch size J and

sequence length T . Also, | x j | and | y j ( m )| denote the total number

of available input values and the number of available target time

points in the m th node, respectively. The backpropagation calcula-

tions through time using full gradients can be obtained as 

δh 

t 
j = U 

T 
f 
δ f 

t+1 
j + U 

T 
i 
δi 

t+1 
j + U 

T 
c δz t+1 

j 
+ U 

T 
o δo 

t+1 
j 

+ δy t 
j 
, 

δ˜ o 

t 
j = δh 

t 
j �

˜ c 
t 
j , 

δo 

t 
j = δ˜ o 

t 
j � σ ′ 

g 

(
o 

t 
j 

)
, 

δ̃  c 
t 
j = δh 

t 
j �

˜ o 

t 
j , 

δc t j = V f � δ f 
t+1 
j + V i � δi 

t+1 
j + V o � δo 

t 
j 
+ δ̃  c 

t 
j � σ ′ 

h 

(
c t 

j 

)
+ δc t+1 

j 
�

˜ f 
t+1 

j , 

δ̃  z 
t 
j = δc t 

j 
�

˜ i 
t 

j , 

δz t j = δ̃  z 
t 
j � σ ′ 

c 

(
z t 

j 

)
, 

δ̃  i 
t 

j = δc t 
j 
�˜ z 

t 
j , 

δi 
t 
j = δ̃  i 

t 

j � σ ′ 
g 

(
i 
t 
j 

)
, 

δ˜ f 
t 

j = δc t 
j 
� c t−1 

j 
, 

δ f 
t 
j = δ˜ f 

t 

j � σ ′ 
g 

(
f 

t 
j 

)
, 

δx t j = W 

T 
f 
δ f 

t 
j + W 

T 
i 
δi 

t 
j + W 

T 
c δz t 

j 
+ W 

T 
o δo 

t 
j 
, 

Finally, if θ ∈ { f, i, z, o } and φ ∈ { f, i }, the gradients of the loss

function with respect to the weights are calculated as 

δW θ (n ) = 

J ∑ 

j=1 

1 

β j 
n 

δθ
{ 0 → T } 
j x 

{ 0 → T } 
j 

(n ) , 

δU θ = 

J ∑ 

j=1 

δθ
{ 1 → T } 
j h 

{ 0 → T −1 } 
j 

, 

δV φ = 

J ∑ 

j=1 

T −1 ∑ 

t=0 

δφt+1 
j � c t j , 

δV o = 

J ∑ 

j=1 

T ∑ 

t=0 

δo 

t 
j � c t j , 

δb θ = 

J ∑ 

j=1 

T ∑ 

t=0 

δθ
t 
j , 

where β j 
n = 

| x j (n ) | 
T is the normalization factor handling missing in-

put values and | x j ( n )| is the number of available time points in the

input’s n th node. Here, we use a fixed sequence length of T to pro-

portionally consider subjects based on their available visits. How-

ever, the robust backpropagation algorithm can easily be general-

ized for a dynamic sequence length. 

2.4. Momentum batch gradient descent 

As an efficient iterative algorithm, momentum batch gradient

descent is applied to find the local minimum of the loss function

calculated over a batch while speeding up the convergence. The

update rule using L2 regularization can be written as 

ϑ 

new = μϑ 

old − α(δω + γω 

old ) , 

ω 

new = ω 

old + ϑ 

new , 

where ϑ is the weight update initialized to zero, ω is the to-be-

updated weight array, δω is the gradient of the loss function with

respect to ω, and α, γ , and μ are the learning rate, weight decay

or regularization factor, and momentum weight, respectively. 
. Experiments 

.1. Data 

Data used in the preparation of this article is obtained from the

DNI database. The ADNI was launched in 2003 as a public-private

artnership, led by principal investigator Michael W. Weiner, MD.

he primary goal of ADNI has been to test whether serial mag-

etic resonance imaging, positron emission tomography, other bi-

logical markers, and clinical and neuropsychological assessment

an be combined to measure the progression of mild cognitive im-

airment and early Alzheimer’s disease. To be more specific, we

se The Alzheimer’s Disease Prediction Of Longitudinal Evolution

TADPOLE) challenge dataset ( Marinescu et al., 2018 ) which is com-

osed of data from the three ADNI phases ADNI 1, ADNI GO, and

DNI 2. This includes roughly 1500 biomarkers acquired from 1737

ubjects (957 males and 780 females) during 12741 visits at 22

istinct time points between 2003 and 2017. Table 1 summarizes

tatistics of the demographics in the TADPOLE dataset. Note that

he subjects include missing values and clinical status during their

isits. 

In this work, we have merged existing groups labeled as cogni-

ively normal (CN), significant memory concern (SMC), and normal

NL) under CN, mild cognitive impairment (MCI), early MCI (EMCI),

nd late MCI (LMCI) under MCI, and Alzheimer’s disease (AD) and

ementia under AD. Moreover, groups with labels converting from

ne status to another, e.g. MCI-to-AD, belong to the next status (AD

n this example). 

MRI biomarkers are used for AD progression modeling. This in-

ludes T1-weighted brain MRI volumes of ventricles, hippocampus,

hole brain, fusiform, middle temporal gyrus, and entorhinal cor-

ex. We normalize the MRI measurements by the corresponding

ntracranial volume (ICV). Next, we filter within-class outliers of

ach biomarker – across all subjects and their visits – by assum-

ng them as missing values and normalize the measurements by

caling them linearly to [ −1 , 1 ] . Out of 22 visits, we initially select

1 regular visits with a fixed interval of one year including base-

ine. Finally, subjects with less than three distinct visits for any

iomarker are removed to obtain 742 subjects. This is to ensure

hat at least two visits are available per biomarker for performing

equence learning through the feedforward step and an additional

isit for backpropagation. 

For evaluation purpose, we partition the entire dataset to three

on-overlapping subsets for training, validation, and testing. To

chieve this, we randomly select 10% of the within-class subjects

or validation and the same for testing. More specifically, we ran-

omly pick subjects based on their baseline labels while ensuring

hat subjects with few and large number of visits are included

n each subset. This process results in 592, 76, and 74 subjects

or training, validations, and testing, respectively. Details on the

mount of available visits in the obtained evaluation subsets are

hown in Table 2 . As can be deduced from the table, 63% of the

btained data is missing. 

.2. Evaluation metrics and statistical tests 

Mean absolute error (MAE) and multi-class area under the re-

eiver operating characteristic (ROC) curve (AUC) are used to as-

ess the performance of modeling and classification, respectively.

AE measures accuracy of continuous prediction per biomarker by

omputing the absolute difference between actual and estimated

alues as follows 

AE = 

1 

I 
∑ 

j,t 

| y t j − s t j | , 
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Table 1 

Demographics of the TADPOLE dataset. 

Number of visits Age, year (mean ± SD) Education, year (mean ± SD) 

male female male female male female 

CN 1356 1389 76.67 ± 6.44 75.85 ± 6.28 17.06 ± 2.51 15.74 ± 2.71 

MCI 2454 1604 75.59 ± 7.47 73.87 ± 8.09 16.22 ± 2.85 15.45 ± 2.76 

AD 1208 900 77.22 ± 7.11 75.45 ± 7.92 15.85 ± 3.03 14.35 ± 2.73 

All (labeled & unlabeled) 12,741 76.00 ± 7.38 15.91 ± 2.86 

Table 2 

Number of visits in the evaluation subsets across all subjects. Note that the complete dataset should have contained 742 × 11 = 8162 visits per biomarker where the 

maximum number of visits per subject is 11. The number of visits per subject per diagnostic group is left blank as subjects can convert from one group to another in 

the course of AD. 

Number of visits across subjects Number of visits per subject (mean ± SD ∼ [min, max]) 

train / validation / test train / validation / test 

Clinical labels CN 1192 / 136 / 149 

MCI 1389 / 198 / 180 

AD 606 / 84 / 92 

All (labeled & unlabeled) 3270 / 428 / 434 5.52 ± 2.32 ∼ [3, 11] / 5.63 ± 2.39 ∼ [3, 11] / 5.86 ± 2.51 ∼ [3, 11] 

MRI biomarkers Ventricles 2481 / 328 / 318 4.19 ± 1.47 ∼ [3, 10] / 4.32 ± 1.46 ∼ [3, 8] / 4.30 ± 1.58 ∼ [3, 9] 

Hippocampus 2381 / 311 / 312 4.02 ± 1.31 ∼ [3, 10] / 4.09 ± 1.29 ∼ [3, 8] / 4.22 ± 1.49 ∼ [3, 7] 

Whole brain 2513 / 328 / 322 4.24 ± 1.49 ∼ [3, 10] / 4.32 ± 1.46 ∼ [3, 8] / 4.35 ± 1.57 ∼ [3, 9] 

Entorhinal cortex 2351 / 310 / 309 3.97 ± 1.29 ∼ [3, 10] / 4.08 ± 1.34 ∼ [3, 8] / 4.18 ± 1.46 ∼ [3, 7] 

Fusiform 2351 / 310 / 309 3.97 ± 1.29 ∼ [3, 10] / 4.08 ± 1.34 ∼ [3, 8] / 4.18 ± 1.46 ∼ [3, 7] 

Middle temporal gyrus 2351 / 309 / 309 3.97 ± 1.29 ∼ [3, 10] / 4.07 ± 1.35 ∼ [3, 8] / 4.18 ± 1.46 ∼ [3, 7] 
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here s t 
j 

and y t 
j 

are the ground-truth and estimated values of the

pecific biomarker for the j th subject at the t th visit, respectively,

nd I is the number of available points in the target array s . 

Multi-class AUC ( Hand and Till, 2001 ) is a measure to exam-

ne the diagnostic performance in a multi-class test set using ROC

nalysis. It is calculated using the posterior probabilities as fol-

ows 

UC = 

1 

( n c ( n c − 1 ) ) 

×
n c −1 ∑ 

i =1 

n c ∑ 

k = i +1 

1 

n i n k 

[ 
SR i −

n i ( n i + 1 ) 

2 

+ SR k −
n k ( n k + 1 ) 

2 

] 
, 

here n c is the number of distinct classes, n i denotes the number

f available points belonging to the i th class, and SR i is the sum of

he ranks of posteriors p ( c i | s i ) after sorting all concatenated poste-

iors { p ( c i | s i ), p ( c i | s k )} in an ascending order, where s i and s k are

ectors of scores belonging to the true classes c i and c k , respec-

ively. 

The modeling performance is statistically assessed for differ-

nt methods using the paired, two-sided Wilcoxon signed rank

est ( Wilcoxon, 1945 ) applied to the obtained absolute errors.

lso, classification performance is analyzed using McNemar’s test

 McNemar, 1947 ) applied to the hard classification results (clinical

tatus) obtained from a linear discriminant analysis (LDA) classifier

ith predicted MRI measurements as input. 

.3. Experimental setup 

The following methods are evaluated in our conducted experi-

ents: 

• L STM-Robust: an L STM network trained based on the proposed

robust backpropagation through time algorithm by setting input

missing values to zero and backpropagating zero errors corre-

sponding to the target missing points while training. 
• L STM-Mean: an L STM network trained using the standard back-

propagation through time algorithm with missing values im-
puted based on mean imputation method prior to training

( Che et al., 2018 ). 
• LSTM-Forward: an LSTM network trained using the standard

backpropagation through time algorithm with missing values

imputed based on forward imputation method prior to training

( Lipton et al., 2016 ). 
• Regression-Based: a parametric, regression-based method 

( Jedynak et al., 2012 ) that automatically handles missing val-

ues. The parameters of the algorithm are initially estimated

using linear regression in 15 iterations and are optimized

using sigmoidal functions in 35 additional iterations where all

parameters converge. 

All the methods are developed in MATLAB R2017b and run on

 2.80 GHz CPU with 16 GB RAM. We initialize the LSTM net-

orks’ weights by generating uniformly distributed random values

n range [ −0 . 05 , 0 . 05] and set the weights’ updates and weights’

radients to zero. The batch size is set to the number of avail-

ble training subjects, and the first ten visits are used to estimate

he second to eleventh visits per subject for evaluation purpose.

t should be noted that when data imputation is applied, the ro-

ust backpropagation formulas simply generalize to the ones for

he standard LSTM network. 

We utilize the validation set to tune all the networks’ opti-

ization parameters, each time by adjusting one of the parame-

ers while keeping the rest at fixed values to achieve the lowest

verage MAE. Peephole connections are used in the networks since

hey tend to improve the performance ( Greff et al., 2017 ). Based on

hese strategies, the optimal parameters are obtained as α = 0 . 1 ,

= 0 . 9 , and γ = 0 . 0 0 01 with 10 0 0 epochs. The corresponding

AEs for the validation set are also calculated as 0.0 0296, 0.0 0 025,

.01494, 0.0 0 024, 0.0 0 076, and 0.0 0 097, for ventricles, hippocam-

us, whole brain, entorhinal cortex, fusiform, and middle temporal

yrus, respectively. It takes about 340 seconds to train the network

nd 0.025 seconds to estimate all the validation measurements. It

s worthwhile mentioning that all the estimated measurements are

inearly scaled from [ −1 , 1 ] to the original range of biomarkers us-

ng the original minimum and maximum values while calculating

AEs. 
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Table 3 

Test MRI biomarker modeling performance (MAE) for yearly predictions. The proposed method is compared with the 

alternatives using a paired, two-sided Wilcoxon signed rank test, and this is reported in superscript as LSTM-Robust 

vs. L STM-Mean/L STM-Robust vs. L STM-Forward/LSTM-Robust vs. Regression-Based. † : not significantly different, 

� : p < 0 . 05 , �� : p < 0 . 01 , � � � : p < 0 . 001 . 

LSTM-Robust LSTM-Mean LSTM-Forward Regression-Based 

( Che et al., 2018 ) ( Lipton et al., 2016 ) ( Jedynak et al., 2012 ) 

Ventricles 0.00307 ��� / ��� / ��� 0.00620 0.00472 0.00807 

Hippocampus 0.0 0 023 ��� / �� / ��� 0.0 0 051 0.0 0 034 0.0 0 051 

Whole brain 0.01330 ��� / �� / ��� 0.02375 0.01639 0.00551 

Entorhinal cortex 0.0 0 021 ��� / � / ��� 0.0 0 030 0.0 0 025 0.0 0 035 

Fusiform 0.0 0 068 ��� / ��� / ��� 0.00130 0.0 010 0 0.0 0 090 

Middle temporal gyrus 0.0 0 087 ��� / † / � 0.00126 0.00118 0.00111 

Table 4 

Test diagnostic performance (AUC) of the estimated MRI biomarker values using an LDA classifier. The pro- 

posed method is compared with the alternatives using McNemar’s test, and this is reported in superscript as 

L STM-Robust vs. L STM-Mean/L STM-Robust vs. L STM-Forward/LSTM-Robust vs. Regression-Based. † : not signif- 

icantly different, p < 0 . 05 , �� : p < 0 . 01 , � � � : p < 0 . 001 . 

LSTM-Robust LSTM-Mean LSTM-Forward Regression-Based 

( Che et al., 2018 ) ( Lipton et al., 2016 ) ( Jedynak et al., 2012 ) 

CN vs. MCI 0.5914 † / † / † 0.5838 0.5800 0.5468 

CN vs. AD 0.9029 ��� / ��� / ��� 0.8404 0.8150 0.7826 

MCI vs. AD 0.7844 † / † / † 0.6936 0.6890 0.7330 

CN vs. MCI vs. AD 0.7596 † / � / � 0.7059 0.6947 0.6875 
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Fig. 3. Modeling performance of MRI biomarkers for various amounts of missing 

values. 
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4. Results and discussion 

After successfully training the LSTM networks and the

regression-based method for DPM, they are all evaluated using the

test set. 

4.1. Biomarker modeling 

Table 3 compares the test MRI biomarker modeling perfor-

mance (MAE) using aforementioned methods. Even though the

performance is reported per biomarker, the models are jointly fit-

ted to all biomarkers. As it can be deduced from Table 3 , LSTM-

Robust significantly outperforms the other methods in all MRI

biomarkers except for whole brain where the regression-based ap-

proach performs significantly better and for middel temporal gyrus

where there is no difference between the proposed method and

LSTM-Forward. 

4.2. Predicting clinical status 

To assess the ability of the estimated measurements in predict-

ing the clinical status, we train an LDA classifier using the esti-

mated training measurements and apply it to the estimated test

data to compute the posterior probabilities. The obtained scores

are then used to calculate diagnostic AUCs. The diagnostic predic-

tion results for the test set are shown in Table 4 . As can be seen,

LSTM-Robust outperforms all other methods in predicting clinical

status of subjects per visit with a multi-class AUC of 0.76, which

reveals the effect of modeling on classification performance. One

could of course use other classifiers or train the LSTM network di-

rectly for classification based on sequence-to-label learning to po-

tentially improve the diagnostic AUCs. However, the focus of this

work is on DPM based on sequence-to-sequence learning. In addi-

tion, sequence-to-label learning would only be able to utilize the

part of the training data which has available clinical status. 

The multi-class AUC of 0.76 obtained using predicted measure-

ments from the proposed approach is within the top-five AUCs of

the state-of-the-art, cross-sectional MRI-based classification results

of the recent challenge on Computer-Aided Diagnosis of Dementia

(CADDementia) ( Bron et al., 2015 ) that ranged from 0.75 to 0.79.

It should, however, be noted that there are important differences
etween this study and the CADDementia challenge. Firstly, this

ork has the advantage of training and testing data from the same

ohort whereas CADDementia algorithms were applied to classify

ata from independent cohorts. Secondly, the top performing CAD-

ementia algorithms incorporated different types of MRI biomark-

rs besides volumetry. Thirdly, this work predicts the input fea-

ures to the classifier based on historical longitudinal data. 

.3. Robustness as a function of amount of missing data 

To evaluate the modeling robustness of the proposed method

ompared to the alternatives for different amounts of missing data,

e construct subsamples of the training dataset by randomly re-

oving up to 50% of the actual data per biomarker and train the

ethods on the smaller datasets. Fig. 3 illustrates the modeling

erformance of the different methods on various amounts of miss-

ng measurements, from 0% to 50%. It is important to note that the
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Table 5 

Test MRI biomarker modeling performance (MAE) for half-yearly predictions. 

LSTM-Robust LSTM-Mean LSTM-Forward Regression-Based 

( Che et al., 2018 ) ( Lipton et al., 2016 ) ( Jedynak et al., 2012 ) 

Ventricles 0.00272 0.00973 0.01030 0.00659 

Hippocampus 0.0 0 023 0.0 0 068 0.0 0 065 0.0 0 043 

Whole brain 0.01181 0.03332 0.02552 0.00601 

Entorhinal cortex 0.0 0 021 0.0 0 037 0.0 0 032 0.0 0 038 

Fusiform 0.0 0 061 0.00164 0.00196 0.0 0 091 

Middle temporal gyrus 0.0 0 085 0.00220 0.00263 0.0 0 097 
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raining data already includes a large number of missing values at

issing rate of 0% – i.e. 63% of actual data as seen on Table 2 .

or better comparison, we take the average of MAEs normalized

y the range of corresponding biomarkers to obtain a single curve

er method. As can be seen, the result of the proposed method is

uperior to those of the benchmarks up until missing around 74%

f the data. For higher rates of missing data, basic LSTM with for-

ard imputation outperforms all other methods. One reason for

hy LSTM with forward imputation is robust to the higher rates

f missing data could be due to the fact that it replaces the miss-

ng values placed at the beginning of a sequence with the whole

raining data median. 

.4. Irregular time intervals 

As final experiment, we assess generalizability of the proposed

ethod for predicting measurements of irregular visits. In general,

tandard LSTM networks are designed to handle evenly spaced se-

uences. We used the same approach in our baseline experiments

or AD progression modeling application by disregarding visiting

onths 3, 6 and 18, and confined the experiments to yearly follow-

p in the ADNI data. Now, we employ the available measurements

f the 6th and 18th visiting months from the TADPOLE dataset

nd predict biomarker values of half-yearly follow-ups by assum-

ng unavailable visits as missing data. In this experiment, 78% of

he actual data is missing. We apply the same methods to the ex-

ended data. Table 5 details the test modeling performance of the

RI biomarkers for half-yearly predictions using the different DPM

ethods. As can be seen, our proposed DPM method outperforms

ll other methods in all categories. More interestingly, consider-

ng the corresponding results from Table 3 for yearly predictions,

ne can deduce that the modeling performance of the proposed

ethod improves by utilizing the irregular visits. However, the ad-

itional time points in the LSTM increases the required time for

raining and validation to 1090 seconds and 0.061 seconds, respec-

ively. 

As an alternative, one could utilize modified LSTM architectures

here the networks learn a number of parameters to encode vis-

ting patterns among longitudinal patient records ( Baytas et al.,

017; Neil et al., 2016 ). However, using such methods not only in-

rease the complexity of the network but also risk learning any

ime spacing patterns in the data. 

. Conclusions 

In this paper, a training algorithm was proposed for LSTM net-

orks aiming to improve robustness against missing data, and

he robustly trained LSTM network was applied to AD progres-

ion modeling using longitudinal measurements of MRI biomark-

rs. To the best of our knowledge, this is the first time RNNs have

een studied and applied to DPM within neurodegenerative dis-

ase. Moreover, since RNNs are non-parametric learning methods,

he proposed approach can be applied to different time-series data

nd characteristics than the monotonic behavior that one typically

ncounters in MRI-based neurodegenerative disease progression
odeling. The proposed training method demonstrated better per-

ormance than using imputation prior to standard LSTM network

raining and outperformed an established parametric, regression-

ased DPM method in terms of both biomarker prediction and

ubsequent diagnostic classification. This method is also applica-

le for other types of RNNs such as gated recurrent units (GRUs)

 Cho et al., 2014 ). This study highlights the potential of RNNs for

odeling the progression of AD using longitudinal measurements,

rovided that proper care is taken to handle missing values and

ime intervals. 
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